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Abstract

We analyze theoretically the effect of particle nonsphericity on the backscattering enhancement factor zhp in the helicity-

preserving channel. Using numerically exact T-matrix and vector radiative-transfer codes, we have performed

computations for optically semi-infinite homogeneous layers composed of polydisperse, randomly oriented oblate

spheroids with the real part of the refractive index equal to 1.2, 1.4, and 1.6, the imaginary part of the refractive index equal

to 0 and 0.01, various values of the equal-surface-area-sphere effective size parameter, and aspect ratios 1pep2. Our

computations demonstrate that whereas for spheres zhp � 2, for spheroids the helicity-preserving enhancement factor can

deviate quite significantly from the value 2. The magnitude of this deviation varies substantially with particle microphysical

parameters and illumination geometry.
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1. Introduction

During the past two decades, extensive experimental and theoretical studies of coherent backscattering (CB)
of polarized light from discrete disordered media have been reported (see, e.g. [1–9] and references therein).
Initially, various approximate methods were used in theoretical analyses of this problem (see, e.g. [10–15]).
More recently, Mishchenko [16,17] has used the microscopic vector theory of CB [9] to derive rigorous
relations for the computation of various polarization enhancement factors in the case of the exact
backscattering direction for media composed of independently scattering particles of arbitrary size and shape.
General properties of these characteristics have been studied, and the results of computations, performed
mainly for spherical particles, have been reported [18,19].

It is interesting and important, however, to examine in detail how the enhancement factors can be affected
by particle nonsphericity, which is exactly the purpose of this paper. We present and analyze the results of
computations of the helicity-preserving enhancement factor, zhp, for semi-infinite homogeneous slabs
composed of polydisperse, randomly oriented oblate spheroids with varying aspect ratios. The interest in this
e front matter r 2006 Elsevier Ltd. All rights reserved.
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problem stems partially from the fact that in the case of spherical particles zhp � 2, whereas the results of
laboratory measurements of zhp reported in [20] showed a notable deviation from the value 2, which was
interpreted in terms of a significant contribution of recurrent multiple scattering to the reflected light. We will
demonstrate that these laboratory results may allow an alternative interpretation.

2. Basic formulae

Let the scattering medium be a plane-parallel semi-infinite slab composed of randomly distributed,
independently scattering particles. This slab is illuminated by a parallel beam of light incident in the direction
specified by a couplet fyXp=2;j ¼ 0g, and R is the Stokes reflection matrix for exactly the backscattering
direction fp� y; pg. The y and j are the polar and azimuth angles, respectively, specified in a spherical
coordinate system with the z-axis oriented along the outward normal to the boundary of the slab. We will also
specify the direction of incidence by the couplet fmX0;j ¼ 0g, where m ¼ � cos y.

For a macroscopically isotropic and mirror-symmetric scattering medium [9,21,22], the matrix R has the
following block-diagonal structure:

R ¼

R11 R12 0 0

R12 R22 0 0

0 0 R33 R34

0 0 �R34 R44

2
6664

3
7775. (1)

In accordance with the microscopic theory of coherent backscattering [9], the matrix R can be decomposed as

R ¼ R1 þRM þRC, (2)

where R1 is the contribution of the first-order scattering, RM is the diffuse multiple-scattering contribution
composed of all the ladder diagrams of orders nX2, and RC is the cumulative contribution of all the cyclical
diagrams. The matrices R1 and RM can be found by solving the vector form of the Ambarzumian’s nonlinear
integral equation [9,16,19,23]. Then the matrix RC can be obtained from the following exact relation [17]:

RC ¼

RC
11 RM

12 0 0

RM
12 RC

22 0 0

0 0 RC
33 RM

34

0 0 �RM
34 RC

44

2
66664

3
77775, (3)

where

RC
11 ¼

1
2
ðRM

11 þRM
22 �RM

33 þRM
44Þ, (4)

RC
22 ¼

1
2
ðRM

11 þRM
22 þRM

33 �RM
44Þ, (5)

RC
33 ¼

1
2
ð�RM

11 þRM
22 þRM

33 þRM
44Þ, (6)

RC
44 ¼

1
2
ðRM

11 �RM
22 þRM

33 þRM
44Þ. (7)

For sparsely distributed, independently scattering particles, the Stokes scattering matrix is independent of the
particle number density [9].

For circularly polarized incident light with a Stokes column vector I0 ¼ ½I0 0 0 I0�
T, the backscattering

enhancement factor in the helicity-preserving channel is as follows [17]:

zhp ¼
R1

11 þR1
44 þ 2RM

11 þ 2RM
44

R1
11 þR1

44 þRM
11 þRM

44

¼ 1þ
RM

11 þRM
44

R1
11 þR1

44 þRM
11 þRM

44

. ð8Þ
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For spherically symmetric scatterers, R1
44 ¼ �R

1
11 so that zhp � 2, whereas for randomly oriented

nonspherical particles 1pzhpp2. For grazing incidence and/or a small single-scattering albedo $, the main
contribution to the backscattered diffuse radiation comes from the singly scattered light. This means that with
m! 0 and/or with $! 0, the diffuse multiple-scattering component of the Stokes reflection matrix RM

decreases and ultimately vanishes in comparison with the first-order-scattering component, and we have

lim
m!0

zhp ¼ 1, (9)

lim
$!0

zhp ¼ 1. (10)

The results of computations reported in [17] for one model of monodisperse oblate spheroids showed perfect
numerical agreement with the theoretical limit (9).

To determine the elements of the matrix RM, one must first calculate the elements of the normalized Stokes
scattering matrix for the particles forming the medium [9,21,22]. In this study, we have used the exact method
that was developed in [24] and is based on Waterman’s T-matrix approach [25]. Then the elements RM

11 and
RM

44 were computed by means of a numerical solution of Ambarzumian’s nonlinear integral equation as
described in [19,23].

3. Numerical results and discussion

To model the potential effect of particle nonsphericity on the helicity-preserving enhancement factor zhp, we
have chosen randomly oriented oblate spheroids distributed over surface-equivalent-sphere radii r according
to the following power law:

nðrÞ ¼
constant� r�3; r1prpr2;

0 otherwise:

(
(11)

The effective radius and effective variance of the size distribution are defined by

reff ¼
1

hGi

Z r2

r1

dr nðrÞrpr2, (12)

veff ¼
1

hGir2eff

Z r2

r1

dr nðrÞðr� reff Þ
2pr2, (13)

respectively, where

hGi ¼

Z r2

r1

dr nðrÞpr2 (14)

is the average area of the geometrical projection per particle [21]. The shape of a spheroid is fully described by
just one parameter, the aspect ratio e (i.e., the ratio of the larger to the smaller spheroid axes), along with a
designation of either prolate or oblate.

We have performed computations of the helicity-preserving enhancement factor for a semi-infinite
homogeneous slab composed of spheroids with the real part of the refractive index mR ¼ 1:2; 1:4, and 1.6, the
imaginary part of the refractive index mI ¼ 0 and 0.01, a range of values of the effective size parameter
xeff ¼ 2preff=l1 (l1 is the wavelength of the incident radiation in the surrounding medium), and aspect ratios
1pep2. The effective variance of the size distribution veff was fixed at 0.1. The main results of our
computations are shown in the form of color diagrams of the helicity-preserving enhancement factor as a
function of the effective size parameter and aspect ratio for m ¼ 1; 0:642, and 0.008, Figs. 1 and 2.

Let us first analyze the case of conservative scattering, mI ¼ 0. Fig. 1 reveals a significant dependence of zhp
on the real part of the refractive index and illumination geometry. One can see that in the case ofmR ¼ 1:2 and
normal incidence ðm ¼ 1Þ, zhp does not deviate substantially from the value 2 for all values of xeff and e
considered. The reason for this is twofold: RM

44 � �R
M
11 for small effective size parameters, whereas R1

11 þ

R1
445RM

11 þRM
44 for xeff\2 [cf. Eq. (8)].
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Fig. 1. Helicity-preserving enhancement factor versus effective equal-surface-area-sphere size parameter and aspect ratio for mR ¼ 1:2
(left-hand column), 1.4 (middle column), and 1.6 (right-hand column), and m ¼ 1 (top row), 0.642 (middle row), and 0.008 (bottom row).

The imaginary part of the refractive index is fixed at mI ¼ 0.
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With a few exceptions, the deviation of the helicity-preserving enhancement factor from the value 2
increases with increasing real part of the refractive index and/or with increasing effective size parameter, which
is a consequence of an increase in the first-order-scattering contribution and in the deviation of RM

44 from
�RM

11. The range of effective size parameters at which the deviation of zhp from the value 2 is significant also
increases with increasing refractive index.

Interestingly, the helicity-preserving enhancement factor is not a monotonous function of the aspect ratio.
This is a direct consequence of the specific aspect-ratio dependence of the elements R1

11 and R1
44 first observed

and analyzed in [26]. Accordingly, Fig. 1 shows that with decreasing m and, thus, with increasing contribution
of the first-order scattering, the dependence of zhp on particle asphericity increases and the value of zhp
decreases.

The bottom three diagrams of Fig. 1 are, perhaps, the most interesting in that they reveal an extremely
complex interplay between the various parameters affecting the value of the helicity-preserving enhancement
factor. Interestingly, even the illumination direction corresponding to m ¼ 0:008 (i.e., y� 90� ¼ 0:5�) is not
grazing enough to make the multiple-scattering contribution much smaller than the single-scattering one,
especially for mR ¼ 1:2.

The most obvious effect of increasing absorption is to reduce the single-scattering albedo, especially for very
small particles [21], and hence the multiple-scattering contribution to the reflection matrix. The net result is a
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Fig. 2. As in Fig. 1, but for mI ¼ 0:01.
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significant decrease in the helicity-preserving enhancement factor and a somewhat weaker dependence on
illumination geometry, as demonstrated in Fig. 2. Fig. 3 details the effect of absorption on particles with very
small size parameters and demonstrates how close to unity can zhp be even in the case of normal incidence.

It should be noted that accurate numerical computations of the helicity-preserving enhancement factor
become problematic for absorbing particles with vanishing size parameters since both the single-scattering and
the multiple-scattering components of the reflection matrix become very small, thereby resulting in an ill-
defined ratio on the right-hand side of Eq. (8). Therefore, the computation of the single-scattering matrix
followed by the numerical solution of the radiative transfer equation must be carried out with maximal
precision. Note that a similar problem, concerning the case of spherical particles, was discussed earlier in [19].
4. Conclusions

Using the model of a semi-infinite homogeneous slab composed of randomly oriented, polydisperse oblate
spheroids with varying aspect ratios, we have demonstrated that the helicity-preserving enhancement factor
can be affected profoundly by particle nonsphericity. Instead of being identically equal to 2, as is the case with
spherically symmetric scatterers, the actual value of zhp for nonspherical particles is the result of an intricate
interplay of such factors as shape, real and imaginary parts of the refractive index, particle size, and
illumination geometry.
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Fig. 3. Helicity-preserving enhancement factor versus aspect ratio for absorbing ðmI ¼ 0:01Þ spheroids withmR ¼ 1:2 (top panels) and 1.6

(bottom panels). The incidence angles are those for and m ¼ 1 (left-hand panels) and 0.008 (right-hand panels). Solid curves: xeff ¼ 0:031;
dotted curves: xeff ¼ 0:063; dashed curves: xeff ¼ 0:157; dot-dashed curves: xeff ¼ 2:09.
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Our numerical data exhibit zhp values comparable to and even smaller than those reported by Wiersma et al.
[20]. We thus may conclude that those experimental results can be explained, at least partially, by the fact that
the solid particles that formed the laboratory scattering samples had nonspherical shapes. Unfortunately, the
lack of precise and comprehensive microphysical characterization of the scattering particles in [20] makes it
rather problematic to perform a definitive quantitative analysis of those measurement results.
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